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Abstract:    Let  graph. A bijection  induces an edge labeling  such that 

for any edge   if   otherwise. where  and   

 

we say that f is SD- prime labeling if  for all . G is SD prime if it admits SD prime labeling.The labeling f is called 

SD prime cordial labeling if it satisfies  , where  is number of edges labeled by  and  respectively. 

 is SD prime cordial if it admits SD prime cordial labeling. In this paper we proved that  and  if 

, admits  Prime Cordial. A graph that admits  prime cordial labeling is called  prime cordial graphs.  
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1  Introduction 

         Consider a graph  be a simple 

finite and undirected with order  and size 

, the notation can be found in [1]. In [2] refer for 

detailed survey of graph labeling. In [3] and [4] the authors 

introduced the concept of - Prime cordial labeling and 

they proved for graphs like fan, star, wheel, double star, 

path, ladder, double fan. In [5] and [6] the authors proved by 

duplication of each vertex of path and cycle by an edge 

admits -Prime Cordial labeling . In this paper we prove 

that  and  if 

 are -Prime Cordial graphs.  

 

II. Preliminaries 

Definition 1.1  A bijection  

induces an edge labeling  such that 

for any edge  in .  if  

and  otherwise we say  is -Prime 

labeling in  for all . Moreover  

is -Prime if it admits -Prime labeling.  

  

Definition 1.2  A bijection 

 induces an edge 

labeling  such that for any edge  in 

,  if gcd  and  

otherwise. The labeling  is called -Prime Cordial 

labeling if . We say that G is -

Prime cordial if it -Prime cordial labeling.  

  

Definition 1.3   Brush Graph  

The Brush graph  can be constructed 

by path graph  by joining the star graph  at 

each vertex of the path . (ie) .  

  

Definition 1.4   Open Triangular Ladder Graph   

An Open Triangular Ladder  is 

obtained from an open ladder  by adding the 

.  

  

Definition 1.5   Shadow Graph   

Let  be a connected graph. A graph constructed 

by taking two copies of  say  and  and joining each 

vertex  in  to the neighbours of the corresponding 

vertex  in  there exits  in  such that 

. The resulting graph is known as shadow 

graph and it is denoted by .  

  

Definition 1.6   Path   

All the vertices in a walk are distinct is called a 

path and a path of length  is denoted by .  

  

Definition 1.7   Cycle   

A closed path is called a cycle ,and path of length 



International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE) 

Volume: 5 Issue: 3  

ISSN: 2349-7947 

13 – 17 

____________________________________________________________________________________________________________________ 
 

14 
 

____________________________________________________________________________________________________________________ 

IJRMEE| March 2018, Available @ http://www.ijrmee.org 

 is denoted by .  

 

II Main Results 

Theorem 2.1. The Brush graph  is -

Prime cordial .  

Proof: Let  the brush graph 

Let 

 

Let 

 

,  

Define a vertex labeling , 

 

,  

 ,  

The induced edge labeling is  

defined by 

 if  

  

The edge sets are  

 

 

In   

 

 

 

 

 

  

  

  

            In   

 

 

 

 

  

  

  

 Thus  

Hence  admits -rime cordial labeling.  

  is prime cordial. 

 

Illustration 2.2  

Figure 1     

 Theorem 2.3. The graph   admits 

-Prime cordial labeling. 

proof: Let  the open triangular 

ladder graph. 

Let  

Let 

 

     

 

 

 
Define a labeling,  

 

,    

The induced edge labeling is  

defined by 

 if  

  

The edge sets are  

 

  

 

 
The induced edge labels are  
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 Thus  

Hence  admits -Prime cordial labeling. 

  is  prime cordial. 

Illustration 2.4  

 
    

 Figure 2      

 Theorem 2.5. The graph  is -Prime 

cordial. 

proof: Let  

Let 

 

 

    

Define a vertex labeling  

 by  

,    

 ,   

The induced edge labeling is  

defined by 

 if  

  

The edge sets are, 

 

 

 

 

In   
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 Thus  

Hence  admits -Prime cordial labeling.  

  is -Prime cordial 

Illustration 2.6  

 
  

Figure  

 Theorem2.7. The graph , 

 is  Prime cordial. 

Proof: Let  be  ,  

Let  

and  

 
      

 

       

 

;   . 

Define a vertex labeling, 

 by  

,   

,   

The induced edge labeling is  

defined by 

 if  

  

The induced edge labels are,  
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 Similarly  

  

  

  

  

  

Hence  admits -Prime cordial labeling. 

  is -Prime cordial 

Illustration 2.8  

   

 

 Figure 4      

 

 Conclusion:  

 We proved  and  if 

 are -Prime cordial graphs. It is 

interesting work. Some one may extend for other graphs in 

future. 
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